skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Nordström, Jakob"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Berg, Jeremias; Nordström, Jakob (Ed.)
    Satisfiability solvers have been instrumental in tackling hard problems, including mathematical challenges that require years of computation. A key obstacle in efficiently solving such problems lies in effectively partitioning them into many, frequently millions of subproblems. Existing automated partitioning techniques, primarily based on lookahead methods, perform well on some instances but fail to generate effective partitions for many others. This paper introduces a powerful partitioning approach that leverages prefixes of proofs derived from conflict-driven clause-learning solvers. This method enables non-experts to harness the power of massively parallel SAT solving for their problems. We also propose a semantically-driven partitioning technique tailored for problems with large cardinality constraints, which frequently arise in optimization tasks. We evaluate our methods on diverse benchmarks, including combinatorial problems and formulas from SAT and MaxSAT competitions. Our results demonstrate that these techniques outperform existing partitioning strategies in many cases, offering improved scalability and efficiency. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Berg, Jeremias; Nordström, Jakob (Ed.)
    We present a lightweight reencoding technique that augments propositional formulas containing implicit or explicit exactly-one constraints with auxiliary variables derived from the order encoding. Our approach is based on the observation that many formulas contain clauses where each literal appears only in that clause, and that these unique literal clauses can be replaced by the corresponding sequential counter encoding of exactly-one constraints, which introduces the same variables as the order encoding. We implemented the reencoding in the state-of-the-art SAT solver CaDiCaL with support for proof logging and solution reconstruction. Experiments on SAT Competition benchmarks demonstrate that our technique enables solving dozens of additional formulas. We found that shuffling a formula before reencoding harms performance. To mitigate this issue, we introduce a method that sorts literals within clauses based on the formula structure before applying our reencoding. The same technique also predicts whether reencoding is likely to yield improvements. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. Berg, Jeremias; Nordström, Jakob (Ed.)
    Knowledge compilers convert Boolean formulas, given in conjunctive normal form (CNF), into representations that enable efficient evaluation of unweighted and weighted model counts, as well as a variety of other useful properties. With projected knowledge compilation, the generated representation describes the restriction of the formula to a designated set of data variables, with the remaining ones eliminated by existential quantification. Projected knowledge compilation has applications in a variety of domains, including formal verification and synthesis. This paper describes a formally verified proof framework for certifying the output of a projected knowledge compiler. It builds on an earlier clausal proof framework for certifying the output of a standard knowledge compiler. Extending the framework to projected compilation requires a method to represent Skolem assignments, describing how the quantified variables can be assigned, given an assignment for the data variables. We do so by extending the representation generated by the knowledge compiler to also encode Skolem assignments. We also refine the earlier framework, moving beyond purely clausal proofs to enable scaling certification to larger formulas. We present experimental results obtained by making small modifications to the D4 projected knowledge compiler and extensions of our earlier proof generator. We detail a soundness argument stating that a compiler output that passes our certifier is logically equivalent to the quantified input formula; the soundness argument has been formally validated using the HOL4 proof assistant. The checker also ensures that the compiler output satisfies the properties required for efficient unweighted and weighted model counting. We have developed two proof checkers for the certification framework: one written in C and designed for high performance and one written in CakeML and formally verified in HOL4. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026